In [1]:
# Load dependencies
import numpy as np
import pandas as pd
import sys
sys.path.insert(0,'../../../statistics_helper/')
from excel_utils import *

Estimating the total biomass of humans

To estimate the total biomass of humans, we rely on estimates of the total human population from the UN World Population Prospects of 2017 (File - 'Total Population - Both Sexes'). We use the estimate for the total human population in 2015

In [2]:
#Load data from the UN
data = pd.read_excel('humans_data.xlsx',index_col=0,skiprows=16)

# Use data from 2015, multiply by 1000 because data is given in thousands
tot_human_pop = data.loc[1,'2015']*1e3

print('The UN estimate for the total human population is ≈%.1e' %tot_human_pop)
The UN estimate for the total human population is ≈7.4e+09

We use an estimate for the average body mass of humans of ≈50 kg from Hern. We convert the average body weight to carbon mass assuming 70% water content and 50% carbon out of the dry weight:

In [3]:
wet_to_c = 0.15
human_cc = 5e4*wet_to_c

We estimate the total biomass of humans by multiplying the total number of humans by the average carbon content of a single human:

In [4]:
best_estimate = tot_human_pop*human_cc

print('Our best estimate for the total biomass of humans is ≈%.2f Gt C' %(best_estimate/1e15))
Our best estimate for the total biomass of humans is ≈0.06 Gt C
In [5]:
# Feed results to the chordate biomass data
old_results = pd.read_excel('../../animal_biomass_estimate.xlsx',index_col=0)
result = old_results.copy()
result.loc['Humans',(['Biomass [Gt C]','Uncertainty'])] = (best_estimate/1e15,None)
result.to_excel('../../animal_biomass_estimate.xlsx')

# Feed results to Table 1 & Fig. 1
update_results(sheet='Table1 & Fig1', 
               row=('Animals','Humans'), 
               col='Biomass [Gt C]',
               values=best_estimate/1e15,
               path='../../../results.xlsx')

# Feed results to Table S1
update_results(sheet='Table S1', 
               row=('Animals','Humans'), 
               col='Number of individuals',
               values=tot_human_pop,
               path='../../../results.xlsx')